\(\frac{1}{3}\) | \frac{1}{3} |
\({1 \over \sqrt{3}}\) | {1 \over \sqrt{3}} |
\(|x|, \left|\frac{x}{y}\right|\) | |x|, \left| \frac{x}{y} \right| |
\(\|x\|, \left\|\frac{x}{y}\right\|\) | \|x\|, \left\|\frac{x}{y}\right\| |
\(ax^2 + bx + c = 0\) | ax^2 + bx + c = 0 |
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) | x = {-b \pm \sqrt{b^2-4ac} \over 2a} |
\( \int_{b}^{a} f(x) dx\) | \int_{b}^{a} f(x) dx |
\( f^{\prime}(x), f^{\prime\prime\prime}(x)\) | f^{\prime}(x), f^{\prime\prime\prime}(x) |
\(a \xrightarrow{f} b, a \xleftarrow[g]{} b\) | a \xrightarrow{f} b, a \xleftarrow[g]{} b |
|
\(\sum_{x=1}^n f(x), \sum\limits_{x=1}^n f(x)\) | \sum_{x=1}^n f(x), \sum\limits_{x=1}^n f(x) |
|
\(\prod_{x=1}^n f(x), \prod\limits_{x=1}^n f(x)\) | \prod_{x=1}^n f(x), \prod\limits_{x=1}^n f(x) |
|
\(\lim_{n \to \infty}, \lim\limits_{n \to \infty}\) | \lim_{n \to \infty}, \lim\limits_{n \to \infty} |
\(n \in \mathbb{Z}, x_n \in \mathbb{R}^m\) | n \in \mathbb{Z}, x_n \in \mathbb{R}^m |
\(P(A \mid B) = {P(A \cap B) \over P(A)}\) | P(A \mid B) = {P(A \cap B) \over P(A)} |
\({}_n C_r, {}_n \mathrm{C}_r\) | {}_n C_r, {}_n \mathrm{C}_r |
\(\underbrace{1 + 2 +\dots + k}_k \) | \underbrace{1 + 2 +\dots + k}_k |
\(\left(\begin{array}{cc}
2 & 3 \\ 4 & 5
\end{array}\right)\)
|
\left(\begin{array}{cc}
2 & 3 \\ 4 & 5
\end{array}\right)
|
\(\left[\begin{array}{cc}
2 & 3 \\ 4 & 5
\end{array}\right]\)
|
\left[\begin{array}{cc}
2 & 3 \\ 4 & 5
\end{array}\right]
|
\(\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{array}\right)\)
|
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{array}\right)
|
\(\left(x_1,\dots,x_n\right)^\top
= \left(\begin{array}{ccc}x_1^\top \\ \vdots \\ x_n^\top
\end{array}\right)\)
|
\left(x_1,\dots,x_n\right)^\top
= \left(\begin{array}{ccc}
x_1^\top \\ \vdots \\ x_n^\top
\end{array}\right)
|